Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
J Inorg Biochem ; 245: 112245, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37167732

RESUMO

Leishmaniasis caused by the protozoan Leishmania presents a severe illness, principally in tropical and subtropical areas. Antileishmanial metal complexes, like Glucantime®ï¸ with proven activity, are routinely studied to probe their potency. We investigated the effects of a Cu (II) homoleptic complex coordinated by two dimethyl-bipyridine ligands against Leishmania major stages in silico and in vitro. The affinity of this heterocyclic Cu (II) complex (CuDMBP) towards a parasitic metacaspase was studied by molecular docking. Key pharmacokinetic and pharmacodynamic properties of the complex were predicted using three web-based tools. CuDMBP was tested for in vitro antileishmanial activities using MTT assay, model murine macrophages, flow cytometry, and quantitative real-time polymerase chain reaction (qPCR). Molecular docking confirmed the tendency between the target macromolecule and the complex. ADMET evaluations highlighted CuDMBP's key pharmacological features, including P-glycoprotein-associated GI absorption and lack of trans-BBB permeability. MTT showed significant inhibitory effects against promastigotes. CuDMBP significantly increased the level of cellular IL-12 expression (p < 0.05), while the upregulation observed in the expression of iNOS was considered not significant (p > 0.05). It decreased the expression of IL-10 significantly (p < 0.05). Findings demonstrated that CuDMBP deserves to be introduced as a leishmanicidal candidate provided further studies are carried out.


Assuntos
Antiprotozoários , Simulação por Computador , Cobre , Técnicas In Vitro , Leishmania major , Animais , Camundongos , Apoptose/efeitos dos fármacos , Sítios de Ligação , Caspases/metabolismo , Colorimetria , Cobre/química , Cobre/farmacocinética , Cobre/farmacologia , Cobre/toxicidade , Citometria de Fluxo , Interleucina-12/genética , Leishmania major/efeitos dos fármacos , Leishmania major/enzimologia , Macrófagos/efeitos dos fármacos , Antiprotozoários/química , Antiprotozoários/farmacocinética , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Modelos Moleculares
2.
Biochem Biophys Res Commun ; 637: 308-313, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36413853

RESUMO

Leishmaniasis is an infectious disease caused by obligate intracellular protozoa of the genus Leishmania with high infection and death rates in developing countries. New drugs with better pharmacological performance with regards to safety, efficacy, toxicity, and drug resistance than those/the ones currently used are urgently needed. Trypanothione synthetase (TryS) is an attractive target for the development of drugs against leishmaniasis because it is specific and essential to kinetoplastid parasites. In this study, Leishmaniamajor TryS was expressed and purified, and the kinetic parameters of purified TryS were determined. To identify novel inhibitors of LmTryS, a high-throughput screening (HTS) assay was developed and used to screen a library of 35,040 compounds. In the confirmatory assay, 42 compounds displayed half maximal inhibitory concentration (IC50) values < 50 µM and six of them corresponded to novel structures with IC50 ranging from 9 to 19 µM against LmTryS enzyme activity. Of the six inhibitors, TS001 showed the highest activity against growth of L. major promastigotes, L. donovani promastigotes, and Trypanosoma brucei brucei Lister 427 with IC50 values of 17, 26, and 31 µM, respectively. An in silico docking study using a homology model of LmTryS predicted the molecular interactions between LmTryS and the inhibitors.


Assuntos
Amida Sintases , Antiprotozoários , Leishmania major , Amida Sintases/antagonistas & inibidores , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Leishmania major/efeitos dos fármacos , Leishmania major/enzimologia , Antiprotozoários/farmacologia
3.
J Biol Chem ; 298(11): 102522, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162499

RESUMO

Many pathogens synthesize inositol phosphorylceramide (IPC) as the major sphingolipid (SL), differing from the mammalian host where sphingomyelin (SM) or more complex SLs predominate. The divergence between IPC synthase and mammalian SL synthases has prompted interest as a potential drug target. However, in the trypanosomatid protozoan Leishmania, cultured insect stage promastigotes lack de novo SL synthesis (Δspt2-) and SLs survive and remain virulent, as infective amastigotes salvage host SLs and continue to produce IPC. To further understand the role of IPC, we generated null IPCS mutants in Leishmania major (Δipcs-). Unexpectedly and unlike fungi where IPCS is essential, Δipcs- was remarkably normal in culture and highly virulent in mouse infections. Both IPCS activity and IPC were absent in Δipcs- promastigotes and amastigotes, arguing against an alternative route of IPC synthesis. Notably, salvaged mammalian SM was highly abundant in purified amastigotes from both WT and Δipcs-, and salvaged SLs could be further metabolized into IPC. SM was about 7-fold more abundant than IPC in WT amastigotes, establishing that SM is the dominant amastigote SL, thereby rendering IPC partially redundant. These data suggest that SM salvage likely plays key roles in the survival and virulence of both WT and Δipcs- parasites in the infected host, confirmation of which will require the development of methods or mutants deficient in host SL/SM uptake in the future. Our findings call into question the suitability of IPCS as a target for chemotherapy, instead suggesting that approaches targeting SM/SL uptake or catabolism may warrant further emphasis.


Assuntos
Hexosiltransferases , Leishmania major , Leishmaniose Cutânea , Esfingomielinas , Animais , Camundongos , Leishmania major/enzimologia , Leishmania major/genética , Esfingomielinas/metabolismo , Virulência , Glicoesfingolipídeos/metabolismo , Proteínas de Protozoários/genética , Hexosiltransferases/genética , Leishmaniose Cutânea/parasitologia , Deleção de Sequência
4.
Chem Commun (Camb) ; 58(59): 8258-8261, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35789352

RESUMO

The L-threonine aldolase from Leishmania major was engineered to improve its diastereoselectivity by a CAST/ISM strategy, providing insights into the relationship between the physico-chemical properties of the substrate access path and diastereoselectivity. The steric hindrance, hydrophobic interaction and π-π interaction cooperated to improve the diastereoselectivity of the enzyme, with a diastereomeric excess (de) value reaching 96.3%syn from 26.8%syn.


Assuntos
Glicina Hidroximetiltransferase , Leishmania major , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Leishmania major/enzimologia , Engenharia de Proteínas , Especificidade por Substrato
5.
J Med Chem ; 65(13): 9011-9033, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675511

RESUMO

The optimization of compounds with multiple targets is a difficult multidimensional problem in the drug discovery cycle. Here, we present a systematic, multidisciplinary approach to the development of selective antiparasitic compounds. Computational fragment-based design of novel pteridine derivatives along with iterations of crystallographic structure determination allowed for the derivation of a structure-activity relationship for multitarget inhibition. The approach yielded compounds showing apparent picomolar inhibition of T. brucei pteridine reductase 1 (PTR1), nanomolar inhibition of L. major PTR1, and selective submicromolar inhibition of parasite dihydrofolate reductase (DHFR) versus human DHFR. Moreover, by combining design for polypharmacology with a property-based on-parasite optimization, we found three compounds that exhibited micromolar EC50 values against T. brucei brucei while retaining their target inhibition. Our results provide a basis for the further development of pteridine-based compounds, and we expect our multitarget approach to be generally applicable to the design and optimization of anti-infective agents.


Assuntos
Leishmania major , Oxirredutases , Tetra-Hidrofolato Desidrogenase , Trypanosoma brucei brucei , Leishmania major/efeitos dos fármacos , Leishmania major/enzimologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Pteridinas/química , Pteridinas/farmacologia , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia
6.
J Biol Chem ; 298(2): 101539, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34958799

RESUMO

Copper (Cu) is essential for all life forms; however, in excess, it becomes toxic. Toxic properties of Cu are known to be utilized by host species against various pathogenic invasions. Leishmania, in both free-living and intracellular forms, exhibits appreciable tolerance toward Cu stress. While determining the mechanism of Cu-stress evasion employed by Leishmania, we identified and characterized a hitherto unknown Cu-ATPase in Leishmania major and established its role in parasite survival in host macrophages. This novel L. major Cu-ATPase, LmATP7, exhibits homology with its orthologs at multiple motifs. In promastigotes, LmATP7 primarily localized at the plasma membrane. We also show that LmATP7 exhibits Cu-dependent expression patterns and complements Cu transport in a Cu-ATPase-deficient yeast strain. Promastigotes overexpressing LmATP7 exhibited higher survival upon Cu stress, indicating efficacious Cu export compared with Wt and heterozygous LmATP7 knockout parasites. We further explored macrophage-Leishmania interactions with respect to Cu stress. We found that Leishmania infection triggers upregulation of major mammalian Cu exporter, ATP7A, in macrophages, and trafficking of ATP7A from the trans-Golgi network to endolysosomes in macrophages harboring amastigotes. Simultaneously, in Leishmania, we observed a multifold increase in LmATP7 transcripts as the promastigote becomes established in macrophages and morphs to the amastigote form. Finally, overexpressing LmATP7 in parasites increases amastigote survivability within macrophages, whereas knocking it down reduces survivability drastically. Mice injected in their footpads with an LmATP7-overexpressing strain showed significantly larger lesions and higher amastigote loads as compared with controls and knockouts. These data establish the role of LmATP7 in parasite infectivity and intramacrophagic survivability.


Assuntos
Cobre , Leishmania major , Leishmaniose , ATPases do Tipo-P , Animais , Cobre/metabolismo , Leishmania major/enzimologia , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Mamíferos , Camundongos , ATPases do Tipo-P/metabolismo
7.
Bioorg Chem ; 119: 105539, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34894575

RESUMO

It is urgent to develop less toxic and more efficient treatments for leishmaniases and trypanosomiases. We explore the possibility to target the parasite mitochondrial HslVU protease, which is essential for growth and has no analogue in the human host. For this, we develop compounds potentially inhibiting the complex assembly by mimicking the C-terminal (C-ter) segment of the ATPase HslU. We previously showed that a dodecapeptide derived from Leishmania major HslU C-ter segment (LmC12-U2, Cpd 1) was able to bind to and activate the digestion of a fluorogenic substrate by LmHslV. Here, we present the study of its structure-activity relationships. By replacing each essential residue with related non-proteinogenic residues, we obtained more potent analogues. In particular, a cyclohexylglycine residue at position 11 (cpd 24) allowed a more than three-fold gain in potency while reducing the size of compound 24 from twelve to six residues (cpd 50) without significant loss of potency, opening the way toward short HslU C-ter peptidomimetics as potential inhibitors of HslV proteolytic function. Finally, conjugates constituted of LmC6-U2 analogues and a mitochondrial penetrating peptide were found to penetrate into the promastigote form of L. infantum and to inhibit the parasite growth without showing toxicity toward human THP-1 cells at the same concentration (i.e. 30 µM).


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Adenosina Trifosfatases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Leishmania major/enzimologia , Estrutura Molecular , Relação Estrutura-Atividade , Células THP-1
8.
J Enzyme Inhib Med Chem ; 37(1): 151-167, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894940

RESUMO

An efficient pathway was disclosed for the synthesis of 3-chloro-6-nitro-1H-indazole derivatives by 1,3-dipolar cycloaddition on dipolarophile compounds 2 and 3. Faced the problem of separation of two regioisomers, a click chemistry method has allowed us to obtain regioisomers of triazole-1,4 with good yields from 82 to 90% were employed. Also, the antileishmanial biological potency of the compounds was achieved using an MTT assay that reported compound 13 as a promising growth inhibitor of Leishmania major. Molecular docking demonstrated highly stable binding with the Leishmania trypanothione reductase enzyme and produced a network of hydrophobic and hydrophilic interactions. Molecular dynamics simulations were performed for TryR-13 complex to understand its structural and intermolecular affinity stability in a biological environment. The studied complex remained in good equilibrium with a structure deviation of ∼1-3 Å. MM/GBSA binding free energies illustrated the high stability of TryR-13 complex. The studied compounds are promising leads for structural optimisation to enhance the antileishmanial activity.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , Leishmania major/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Indazóis/síntese química , Indazóis/química , Leishmania major/enzimologia , Modelos Moleculares , Estrutura Molecular , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
9.
PLoS Negl Trop Dis ; 15(10): e0009224, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710089

RESUMO

Leishmaniasis is a neglected tropical disease with diverse outcomes ranging from self-healing lesions, to progressive non-healing lesions, to metastatic spread and destruction of mucous membranes. Although resolution of cutaneous leishmaniasis is a classic example of type-1 immunity leading to self-healing lesions, an excess of type-1 related inflammation can contribute to immunopathology and metastatic spread. Leishmania genetic diversity can contribute to variation in polarization and robustness of the immune response through differences in both pathogen sensing by the host and immune evasion by the parasite. In this study, we observed a difference in parasite chemokine suppression between the Leishmania (L.) subgenus and the Viannia (V.) subgenus, which is associated with severe immune-mediated pathology such as mucocutaneous leishmaniasis. While Leishmania (L.) subgenus parasites utilize the virulence factor and metalloprotease glycoprotein-63 (gp63) to suppress the type-1 associated host chemokine CXCL10, L. (V.) panamensis did not suppress CXCL10. To understand the molecular basis for the inter-species variation in chemokine suppression, we used in silico modeling to identify a putative CXCL10-binding site on GP63. The putative CXCL10 binding site is in a region of gp63 under significant positive selection, and it varies from the L. major wild-type sequence in all gp63 alleles identified in the L. (V.) panamensis reference genome. Mutating wild-type L. (L.) major gp63 to the L. (V.) panamensis sequence at the putative binding site impaired cleavage of CXCL10 but not a non-specific protease substrate. Notably, Viannia clinical isolates confirmed that L. (V.) panamensis primarily encodes non-CXCL10-cleaving gp63 alleles. In contrast, L. (V.) braziliensis has an intermediate level of activity, consistent with this species having more equal proportions of both alleles. Our results demonstrate how parasite genetic diversity can contribute to variation in immune responses to Leishmania spp. infection that may play critical roles in the outcome of infection.


Assuntos
Quimiocina CXCL10/metabolismo , Leishmania major/enzimologia , Leishmaniose/metabolismo , Metaloendopeptidases/metabolismo , Sítios de Ligação , Quimiocina CXCL10/química , Quimiocina CXCL10/genética , Interações Hospedeiro-Parasita , Humanos , Leishmania major/química , Leishmania major/genética , Leishmaniose/genética , Leishmaniose/parasitologia , Leishmaniose/fisiopatologia , Metaloendopeptidases/química , Metaloendopeptidases/genética , Ligação Proteica , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
10.
J Biol Chem ; 297(4): 101198, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34534548

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) fulfills various physiological roles that are unrelated to its glycolytic function. However, to date, the nonglycolytic function of GAPDH in trypanosomal parasites is absent from the literature. Exosomes secreted from Leishmania, like entire parasites, were found to have a significant impact on macrophage cell signaling and function, indicating cross talk with the host immune system. In this study, we demonstrate that the Leishmania GAPDH (LmGAPDH) protein is highly enriched within the extracellular vesicles (EVs) secreted during infection. To understand the function of LmGAPDH in EVs, we generated control, overexpressed, half-knockout (HKO), and complement cell lines. HKO cells displayed lower virulence compared with control cells when macrophages and BALB/c mice were infected with them, implying a crucial role for LmGAPDH in Leishmania infection and disease progression. Furthermore, upon infection of macrophages with HKO mutant Leishmania and its EVs, despite no differences in TNFA mRNA expression, there was a considerable increase in TNF-α protein expression compared with control, overexpressed, and complement parasites as determined by ELISA, RT-PCR, and immunoblot data. In vitro protein translation studies suggest that LmGAPDH-mediated TNF-α suppression occurs in a concentration-dependent manner. Moreover, mRNA binding assays also verified that LmGAPDH binds to the AU-rich 3'-UTR region of TNFA mRNA, limiting its production. Together, these findings confirmed that the LmGAPDH contained in EVs inhibits TNF-α expression in macrophages during infection via posttranscriptional repression.


Assuntos
Vesículas Extracelulares/enzimologia , Regulação da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Leishmania major/enzimologia , Macrófagos/metabolismo , Proteínas de Protozoários/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Vesículas Extracelulares/imunologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/imunologia , Leishmania major/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/imunologia , Fator de Necrose Tumoral alfa/imunologia
11.
Turkiye Parazitol Derg ; 45(2): 83-87, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34103282

RESUMO

Objective: The relationship between drug resistance and the expression of hexokinase (HK) has been indicated in leishmaniasis. According to the prolonged treatment period in cutaneous leishmaniasis (CL) patients co-infected with Crithidia in Iran, this study aims to investigate the expression of HK in the proteome of Leishmania major and Crithidia using a proteomic approach. Methods: A total of 205 samples were removed from the lesions of patients in Fars province, Iran, for the characterization of L. major and Crithidia using polymerase chain reaction (PCR). After protein extraction, two-dimensional gel electrophoresis was employed for protein separation. Several spots were isolated for HK determination in the proteomes of L. major and Crithidia using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS). Results: The PCR results showed 5 positive cases for Crithidia and 96 positive cases for L. major. MALDI TOF/TOF MS indicated HK as a common protein in the proteome of L. major and Crithidia. HK was up-regulated in the Crithidia proteome in comparison with the L. major proteome. Conclusion: Since a relationship between HK expression and drug resistance has been indicated in leishmaniasis, the overexpression of HK in Crithidia might be related to the increased duration of the treatment period in CL patients co-infected with Crithidia.


Assuntos
Crithidia/metabolismo , Hexoquinase/metabolismo , Leishmania major/metabolismo , Proteoma/metabolismo , Coinfecção/tratamento farmacológico , Coinfecção/parasitologia , Crithidia/enzimologia , Crithidia/isolamento & purificação , Resistência a Medicamentos , Infecções por Euglenozoa/tratamento farmacológico , Infecções por Euglenozoa/parasitologia , Humanos , Irã (Geográfico) , Leishmania major/enzimologia , Leishmania major/isolamento & purificação , Proteômica
12.
Chem Biol Interact ; 343: 109478, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33905741

RESUMO

7-Azaindole has been labelled a privileged scaffold for the design of new potent inhibitors of protein kinases. In this paper, we determined the inhibition profiles of novel mono- and disubstituted derivatives of 7-azaindole-coumaranone hybrids on various disease-related protein kinases. Eight hit compounds were identified, including a potent Haspin inhibitor with an IC50 value of 0.15 µM. An interesting observation was that all active monosubstituted compounds displayed dual inhibition for Haspin and GSK-3ß, while disubstituted derivatives inhibited GSK-3ß and LmCK1 from Leishmania major parasite. Analyses of structure activity relationships (SARs) also revealed that mono-substitution with para-fluorobenzyloxy ring produced an equipotent inhibition of Haspin and GSK-3ß. Haspin and GSK-3ß are relevant targets for developing new anticancer agents while LmCK1 is an innovative target for leishmanicidal drugs. Novel compounds reported in this paper constitute promising starting points for the development of new anticancer and leishmanicidal drugs.


Assuntos
Compostos Aza/química , Benzofuranos/química , Indóis/química , Inibidores de Proteínas Quinases/química , Animais , Compostos Aza/síntese química , Compostos Aza/farmacocinética , Benzofuranos/síntese química , Benzofuranos/farmacocinética , Ensaios Enzimáticos , Humanos , Indóis/síntese química , Indóis/farmacocinética , Leishmania major/enzimologia , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Células Sf9 , Spodoptera , Relação Estrutura-Atividade
13.
Acta Crystallogr D Struct Biol ; 77(Pt 4): 510-521, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33825711

RESUMO

Biotin protein ligase catalyses the post-translational modification of biotin carboxyl carrier protein (BCCP) domains, a modification that is crucial for the function of several carboxylases. It is a two-step process that results in the covalent attachment of biotin to the ϵ-amino group of a conserved lysine of the BCCP domain of a carboxylase in an ATP-dependent manner. In Leishmania, three mitochondrial enzymes, acetyl-CoA carboxylase, methylcrotonyl-CoA carboxylase and propionyl-CoA carboxylase, depend on biotinylation for activity. In view of the indispensable role of the biotinylating enzyme in the activation of these carboxylases, crystal structures of L. major biotin protein ligase complexed with biotin and with biotinyl-5'-AMP have been solved. L. major biotin protein ligase crystallizes as a unique dimer formed by cross-handshake interactions of the hinge region of the two monomers formed by partial unfolding of the C-terminal domain. Interestingly, the substrate (BCCP domain)-binding site of each monomer is occupied by its own C-terminal domain in the dimer structure. This was observed in all of the crystals that were obtained, suggesting a closed/inactive conformation of the enzyme. Size-exclusion chromatography studies carried out using high protein concentrations (0.5 mM) suggest the formation of a concentration-dependent dimer that exists in equilibrium with the monomer.


Assuntos
Carbono-Nitrogênio Ligases/química , Proteínas de Transporte/química , Leishmania major/enzimologia , Leishmaniose Cutânea/microbiologia , Proteínas de Protozoários/química , Sítios de Ligação , Biotinilação , Dimerização , Conformação Proteica , Domínios Proteicos
14.
Arch Biochem Biophys ; 703: 108841, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33775623

RESUMO

ATPases belonging to the AAA+ superfamily are associated with diverse cellular activities and are mainly characterized by a nucleotide-binding domain (NBD) containing the Walker A and Walker B motifs. AAA+ proteins have a range of functions, from DNA replication to protein degradation. Rvbs, also known as RUVBLs, are AAA+ ATPases with one NBD domain and were described from human to yeast as participants of the R2TP (Rvb1-Rvb2-Tah1-Pih1) complex. Although essential for the assembly of multiprotein complexes-containing DNA and RNA, the protozoa Rvb orthologs are less studied. For the first time, this work describes the Rvbs from Leishmania major, one of the causative agents of Tegumentar leishmaniasis in human. Recombinant LmRUVBL1 and LmRUVBL2 his-tagged proteins were successfully purified and investigated using biophysical tools. LmRUVBL1 was able to form a well-folded elongated hexamer in solution, while LmRUVBL2 formed a large aggregate. However, the co-expression of LmRUVBL1 and LmRUVBL2 assembled the proteins into an elongated heterodimer in solution. Thermo-stability and fluorescence experiments indicated that the LmRUVBL1/2 heterodimer had ATPase activity in vitro. This is an interesting result because hexameric LmRUVBL1 alone had low ATPase activity. Additionally, using independent SL-RNAseq libraries, it was possible to show that both proteins are expressed in all L. major life stages. Specific antibodies obtained against LmRUVBLs identified the proteins in promastigotes and metacyclics cell extracts. Together, the results here presented are the first step towards the characterization of Leishmania Rvbs, and may contribute to the development of possible strategies to intervene against leishmaniasis, a neglected tropical disease of great medical importance.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Leishmania major/enzimologia , Multimerização Proteica , Sequência de Aminoácidos , Dobramento de Proteína , Estrutura Quaternária de Proteína , Soluções
15.
Protein Expr Purif ; 183: 105877, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33775769

RESUMO

The Leishmania major leucyl-aminopeptidase (LAPLm), a member of the M17 family of proteases, is a potential drug target for treatment of leishmaniasis. To better characterize enzyme properties, recombinant LAPLm (rLAPLm) was expressed in Escherichia coli. A LAPLm gene was designed, codon-optimized for expression in E. coli, synthesized and cloned into the pET-15b vector. Production of rLAPLm in E. coli Lemo21(DE3), induced for 4 h at 37 °C with 400 µM IPTG and 250 µM l-rhamnose, yielded insoluble enzyme with a low proportion of soluble and active protein, only detected by an anti-His antibody-based western-blot. rLAPLm was purified in a single step by immobilized metal ion affinity chromatography. rLAPLm was obtained with a purity of ~10% and a volumetric yield of 2.5 mg per liter, sufficient for further characterization. The aminopeptidase exhibits optimal activity at pH 7.0 and a substrate preference for Leu-p-nitroanilide (appKM = 30 µM, appkcat = 14.7 s-1). Optimal temperature is 50 °C, and the enzyme is insensitive to 4 mM Co2+, Mg2+, Ca2+ and Ba2+. However, rLAPLm was activated by Zn2+, Mn2+ and Cd2+ but is insensitive towards the protease inhibitors PMSF, TLCK, E-64 and pepstatin A, being inhibited by EDTA and bestatin. Bestatin is a potent, non-competitive inhibitor of the enzyme with a Ki value of 994 nM. We suggest that rLAPLm is a suitable target for inhibitor identification.


Assuntos
Aminopeptidases , Escherichia coli , Leishmania major , Proteínas de Protozoários , Aminopeptidases/biossíntese , Aminopeptidases/química , Aminopeptidases/genética , Aminopeptidases/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Leishmania major/enzimologia , Leishmania major/genética , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
16.
PLoS Negl Trop Dis ; 15(3): e0009230, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33651805

RESUMO

Leishmania major is the main causative agent of cutaneous leishmaniasis in the Old World. In Leishmania parasites, the lack of transcriptional control is mostly compensated by post-transcriptional mechanisms. Methylation of arginine is a conserved post-translational modification executed by Protein Arginine Methyltransferase (PRMTs). The genome from L. major encodes five PRMT homologs, including the cytosolic protein associated with several RNA-binding proteins, LmjPRMT7. It has been previously reported that LmjPRMT7 could impact parasite infectivity. In addition, a more recent work has clearly shown the importance of LmjPRMT7 in RNA-binding capacity and protein stability of methylation targets, demonstrating the role of this enzyme as an important epigenetic regulator of mRNA metabolism. In this study, we unveil the impact of PRMT7-mediated methylation on parasite development and virulence. Our data reveals that higher levels of LmjPRMT7 can impair parasite pathogenicity, and that deletion of this enzyme rescues the pathogenic phenotype of an attenuated strain of L. major. Interestingly, lesion formation caused by LmjPRMT7 knockout parasites is associated with an exacerbated inflammatory reaction in the tissue correlated with an excessive neutrophil recruitment. Moreover, the absence of LmjPRMT7 also impairs parasite development within the sand fly vector Phlebotomus duboscqi. Finally, a transcriptome analysis shed light onto possible genes affected by depletion of this enzyme. Taken together, this study highlights how post-transcriptional regulation can affect different aspects of the parasite biology.


Assuntos
Leishmania major/enzimologia , Leishmaniose Cutânea/patologia , Neutrófilos/fisiologia , Proteínas Metiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Leishmania major/genética , Leishmania major/metabolismo , Leishmaniose Cutânea/parasitologia , Camundongos , Proteínas Metiltransferases/genética
17.
J Comput Aided Mol Des ; 35(3): 297-314, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33615401

RESUMO

Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and transmitted by the bite of a sand fly. To date, most available drugs for treatment are toxic and beyond the economic means of those affected by the disease. Protein disulfide isomerase (PDI) is a chaperone protein that plays a major role in the folding of newly synthesized proteins, specifically assisting in disulfide bond formation, breakage, or rearrangement in all non-native proteins. In previous work, we demonstrated that Leishmania major PDI (LmPDI) has an essential role in pathogen virulence. Furthermore, inhibition of LmPDI further blocked parasite infection in macrophages. In this study, we utilized a computer-aided approach to design a series of LmPDI inhibitors. Fragment-based virtual screening allowed for the understanding of the inhibitors' modes of action on LmPDI active sites. The generated compounds obtained after multiple rounds of virtual screening were synthesized and significantly inhibited target LmPDI reductase activity and were shown to decrease in vitro parasite growth in human monocyte-derived macrophages. This novel cheminformatics and synthetic approach led to the identification of a new series of compounds that might be optimized into novel drugs, likely more specific and less toxic for the treatment of leishmaniasis.


Assuntos
Anti-Infecciosos/síntese química , Inibidores Enzimáticos/química , Hexaclorofeno/síntese química , Leishmania major/enzimologia , Leishmaniose/tratamento farmacológico , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/síntese química , Anti-Infecciosos/farmacologia , Domínio Catalítico , Desenho Assistido por Computador , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Hexaclorofeno/farmacologia , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
18.
Comput Biol Chem ; 90: 107412, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33199197

RESUMO

Most notable Kinetoplastids are of the genus Trypanosoma and Leishmania, affecting several millions of humans in Africa and Latin America. Current therapeutic options are limited by several drawbacks, hence the need to develop more efficacious inhibitors. An investigation to decipher the mechanism behind greater inhibitory potency of a chroman-4-one derivative (compound 1) in Trypanosoma brucei pteridine reductase 1 (TbPTR1) and Leishmania major pteridine reductase 1 (LmPTR1) was performed. Estimation of ΔGbind revealed that compound 1 had a greater binding affinity in TbPTR1 with a ΔGbind value of -49.0507 Kcal/mol than -29.2292 Kcal/mol in LmPTR1. The ΔGbind in TbPTR1 were predominantly contributed by "strong" electrostatic energy compared to the "weak" van der Waals in LmPTR1. In addition to this, the NADPH cofactor contributed significantly to the total energy of TbPTR1. A characteristic weak aromatic π interaction common in PTR1 was more prominent in TbPTR1 than LmPTR1. The consistent occurrence of high-affinity conventional hydrogen bond interactions as well as a steady interaction of crucial active site residues like Arg14/Arg17, Ser95/Ser111, Phe97/Phe113 in TbPTR1/LmPTR1 with chroman-4-one moiety equally revealed the important role the moiety played in the activity of compound 1. Overall, the structural and conformational analysis of the active site residues in TbPTR1 revealed them to be more rigid than LmPTR1. This could be the mechanism of interaction TbPTR1 employs in exerting a greater potency than LmPTR1. These findings will further give insight that will be assistive in modifying compound 1 for better potency and the design of novel inhibitors of PTR1.


Assuntos
Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Leishmania major/enzimologia , Oxirredutases/antagonistas & inibidores , Trypanosoma brucei brucei/enzimologia , Cromonas/química , Inibidores Enzimáticos/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Oxirredutases/metabolismo , Termodinâmica
19.
Mol Divers ; 25(3): 1679-1700, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32737682

RESUMO

Leishmaniasis is one of the most neglected tropical diseases that demand immediate attention to the identification of new drug targets and effective drug candidates. The present study demonstrates the possibility of using threonine synthase (TS) as a putative drug target in leishmaniasis disease management. We report the construction of an effective homology model of the enzyme that appears to be structurally as well as functionally well conserved. The 200 nanosecond molecular dynamics data on TS with and without pyridoxal phosphate (PLP) shed light on mechanistic details of PLP-induced conformational changes. Moreover, we address some important structural and dynamic interactions in the PLP binding region of TS that are in good agreement with previously speculated crystallographic estimations. Additionally, after screening more than 44,000 compounds, we propose 10 putative inhibitor candidates for TS based on virtual screening data and refined Molecular Mechanics Generalized Born Surface Area calculations. We expect that structural and functional dynamics data disclosed in this study will help initiate experimental endeavors toward establishing TS as an effective antileishmanial drug target.


Assuntos
Antiprotozoários/química , Carbono-Oxigênio Liases/química , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Antiprotozoários/farmacologia , Sítios de Ligação , Carbono-Oxigênio Liases/antagonistas & inibidores , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Leishmania major/enzimologia , Conformação Molecular , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 210: 112956, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33148491

RESUMO

Leishmaniasis constitutes a severe public health problem, with an estimated prevalence of 12 million cases. This potentially fatal disease has a worldwide distribution and in 2012, the fatal Visceral Leishmaniasis (VL) was declared as new emerging disease in Europe, mainly due to global warming, with expected important public health impact. The available treatments are toxic, costly or lead to parasite resistance, thus there is an urgent need for new drugs with new mechanism of action. Previously, we reported the discovery of CTN1122, a potent imidazo[1,2-a]pyrazine-based antileishmanial hit compound targeting L-CK1.2 at low micromolar ranges. Here, we described structurally related, safe and selective compounds endowed with antiparasitic properties, better than miltefosine, the reference therapy by oral route. L-CK1.2 homology model gave the first structural explanations of the role of 4-pyridyl (CTN1122) and 2-aminopyrimidin-4-yl (compound 21) moieties, at the position 3 of the central core, in the low micromolar to nanomolar L-CK1.2 inhibition, whereas N-methylpyrazole derivative 11 remained inactive against the parasite kinase.


Assuntos
Caseína Quinase I/antagonistas & inibidores , Imidazóis/farmacologia , Leishmania major/enzimologia , Pirazinas/farmacologia , Tripanossomicidas/farmacologia , Caseína Quinase I/metabolismo , Humanos , Imidazóis/química , Leishmania major/efeitos dos fármacos , Leishmania major/metabolismo , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/química , Tripanossomicidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...